Here's a guide to finding the domain of a function:
The domain of a function is the set of all possible input values (often represented by 'x') for which the function is defined and produces a real number output. Finding the domain involves identifying any values that would cause the function to be undefined. Here are some common scenarios to consider:
Fractions: If the function has a fraction, the denominator cannot be zero. Set the denominator equal to zero and solve for x. These values are excluded from the domain.
Square Roots (and other even roots): The expression inside the square root (or any even root, like a fourth root) must be greater than or equal to zero. Set the expression inside the root ≥ 0 and solve for x.
Logarithms: The argument of a logarithm must be strictly greater than zero. Set the argument > 0 and solve for x.
Rational Exponents: If you have a rational exponent like x<sup>m/n</sup>, consider the following:
Functions with Restricted Domains by Definition: Some functions, especially in applied contexts, might have domains restricted based on the problem's context (e.g., you can't have a negative number of items).
Expressing the Domain:
Once you've identified the values that are not in the domain, you can express the domain using:
General Strategy:
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page